Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
NPJ Biofilms Microbiomes ; 10(1): 24, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503759

ABSTRACT

Despite the potential benefits of herbal medicines for therapeutic application in preventing and treating various metabolic disorders, the mechanisms of action were understood incompletely. Ginseng (Panax ginseng), a commonly employed plant as a dietary supplement, has been reported to play its hot property in increasing body temperature and improving gut health. However, a comprehensive understanding of the mechanisms by which ginseng regulates body temperature and gut health is still incomplete. This paper illustrates that intermittent supplementation with ginseng extracts improved body temperature rhythm and suppressed inflammatory responses in peripheral metabolic organs of propylthiouracil (PTU)-induced hypothermic rats. These effects were associated with changes in gut hormone secretion and the microbiota profile. The in-vitro studies in ICE-6 cells indicate that ginseng extracts can not only act directly on the cell to regulate the genes related to circadian clock and inflammation, but also may function through the gut microbiota and their byproducts such as lipopolysaccharide. Furthermore, administration of PI3K inhibitor blocked ginseng or microbiota-induced gene expression related with circadian clock and inflammation in vitro. These findings demonstrate that the hot property of ginseng may be mediated by improving circadian clock and suppressing inflammation directly or indirectly through the gut microbiota and PI3K-AKT signaling pathways.


Subject(s)
Circadian Clocks , Gastrointestinal Microbiome , Panax , Rats , Animals , Circadian Clocks/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/pharmacology , Inflammation , Signal Transduction , Gene Expression
2.
J Nutr Biochem ; 127: 109590, 2024 May.
Article in English | MEDLINE | ID: mdl-38311045

ABSTRACT

The role of the muscle circadian clock in regulating oxidative metabolism exerts a significant influence on whole-body energy metabolism; however, research on the connection between the muscle circadian clock and obesity is limited. Moreover, there is a lack of studies demonstrating the regulatory effects of dietary butyrate on muscle circadian clock and the resulting antiobesity effects. This study aimed to investigate the impacts of dietary butyrate on metabolic and microbiome alterations and muscle circadian clock in a diet-induced obesity model. Male Sprague-Dawley rats were fed a high-fat diet with or without butyrate. Gut microbiota and serum metabolome were analyzed, and molecular changes were examined using tissues and a cell line. Further correlation analysis was performed on butyrate-induced results. Butyrate supplementation reduced weight gain, even with increased food intake. Gut microbiome analysis revealed an increased abundance of Firmicutes in butyrate group. Serum metabolite profile in butyrate group exhibited reduced amino acid and increased fatty acid content. Muscle circadian clock genes were upregulated, resulting in increased transcription of fatty acid oxidation-related genes. In myoblast cells, butyrate also enhanced pan-histone acetylation via histone deacetylase inhibition, particularly modulating acetylation at the promoter of circadian clock genes. Correlation analysis revealed potential links between Firmicutes phylum, including certain genera within it, and butyrate-induced molecular changes in muscle as well as phenotypic alterations. The butyrate-driven effects on diet-induced obesity were associated with alterations in gut microbiota and a muscle-specific increase in histone acetylation, leading to the transcriptional activation of circadian clock genes and their controlled genes.


Subject(s)
Circadian Clocks , Gastrointestinal Microbiome , Animals , Rats , Male , Circadian Clocks/genetics , Butyrates/pharmacology , Butyrates/metabolism , Histones/metabolism , Epigenesis, Genetic , Rats, Sprague-Dawley , Obesity/metabolism , Diet, High-Fat/adverse effects , Fatty Acids/metabolism
3.
Medicine (Baltimore) ; 103(5): e36266, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38306565

ABSTRACT

Numerous studies have demonstrated an intimate relationship between circadian rhythm disorders and the development and prevention of depression. The biological clock genes, which constitute the molecular basis of endogenous circadian rhythms, hold promising prospects for depression treatment. Based on an extensive review of recent domestic and international research, this article presents a comprehensive analysis of how traditional Chinese medicine (TCM) intervenes in depression by regulating circadian rhythms. The findings indicate that TCM exerts its antidepressant effects by targeting specific biological clock genes such as Bmal1, clock, Arntl, Per1, Per2, Per3, Nr1d1, Cry2, and Dbp, as well as regulating circadian rhythms of hormone secretion. However, most current research is still confined to basic experimental studies, lacking clinical double-blind control trials to further validate these viewpoints. Furthermore, there is insufficient research on the signal transduction pathway between biological clock genes and pathological changes in depression. Additionally, further clarification is needed regarding the specific targets of TCM on the biological clock genes.


Subject(s)
Antidepressive Agents , Circadian Clocks , Medicine, Chinese Traditional , Humans , Circadian Clocks/drug effects , Circadian Clocks/genetics , Circadian Rhythm/drug effects , Circadian Rhythm/genetics , Cryptochromes/genetics , Cryptochromes/metabolism , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
4.
Mol Pharmacol ; 105(3): 179-193, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38238100

ABSTRACT

The circadian clock is an endogenous biochemical timing system that coordinates the physiology and behavior of organisms to earth's ∼24-hour circadian day/night cycle. The central circadian clock synchronized by environmental cues hierarchically entrains peripheral clocks throughout the body. The circadian system modulates a wide variety of metabolic signaling pathways to maintain whole-body metabolic homeostasis in mammals under changing environmental conditions. Endocrine fibroblast growth factors (FGFs), namely FGF15/19, FGF21, and FGF23, play an important role in regulating systemic metabolism of bile acids, lipids, glucose, proteins, and minerals. Recent evidence indicates that endocrine FGFs function as nutrient sensors that mediate multifactorial interactions between peripheral clocks and energy homeostasis by regulating the expression of metabolic enzymes and hormones. Circadian disruption induced by environmental stressors or genetic ablation is associated with metabolic dysfunction and diurnal disturbances in FGF signaling pathways that contribute to the pathogenesis of metabolic diseases. Time-restricted feeding strengthens the circadian pattern of metabolic signals to improve metabolic health and prevent against metabolic diseases. Chronotherapy, the strategic timing of medication administration to maximize beneficial effects and minimize toxic effects, can provide novel insights into linking biologic rhythms to drug metabolism and toxicity within the therapeutical regimens of diseases. Here we review the circadian regulation of endocrine FGF signaling in whole-body metabolism and the potential effect of circadian dysfunction on the pathogenesis and development of metabolic diseases. We also discuss the potential of chrononutrition and chronotherapy for informing the development of timing interventions with endocrine FGFs to optimize whole-body metabolism in humans. SIGNIFICANCE STATEMENT: The circadian timing system governs physiological, metabolic, and behavioral functions in living organisms. The endocrine fibroblast growth factor (FGF) family (FGF15/19, FGF21, and FGF23) plays an important role in regulating energy and mineral metabolism. Endocrine FGFs function as nutrient sensors that mediate multifactorial interactions between circadian clocks and metabolic homeostasis. Chronic disruption of circadian rhythms increases the risk of metabolic diseases. Chronological interventions such as chrononutrition and chronotherapy provide insights into linking biological rhythms to disease prevention and treatment.


Subject(s)
Circadian Clocks , Metabolic Diseases , Humans , Animals , Circadian Rhythm/genetics , Circadian Clocks/genetics , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/pharmacology , Metabolic Diseases/metabolism , Energy Metabolism , Mammals/metabolism
5.
Genes (Basel) ; 14(11)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38003025

ABSTRACT

Knowledge of circadian rhythm clock gene expression outside the suprachiasmatic nucleus is increasing. The purpose of this study was to determine whether expression of circadian clock genes differed within or among the bovine stress axis tissues (e.g., amygdala, hypothalamus, pituitary, adrenal cortex, and adrenal medulla). Tissues were obtained at an abattoir from eight mature nonpregnant Brahman cows that had been maintained in the same pasture and nutritional conditions. Sample tissues were stored in RNase-free sterile cryovials at -80 °C until the total RNA was extracted, quantified, assessed, and sequenced (NovaSeq 6000 system; paired-end 150 bp cycles). The trimmed reads were then mapped to a Bos taurus (B. taurus) reference genome (Umd3.1). Further analysis used the edgeR package. Raw gene count tables were read into RStudio, and low-expression genes were filtered out using the criteria of three minimum reads per gene in at least five samples. Normalization factors were then calculated using the trimmed mean of M values method to produce normalized gene counts within each sample tissue. The normalized gene counts important for a circadian rhythm were analyzed within and between each tissue of the stress axis using the GLM and CORR procedures of the Statistical Analysis System (SAS). The relative expression profiles of circadian clock genes differed (p < 0.01) within each tissue, with neuronal PAS domain protein 2 (NPAS2) having greater expression in the amygdala (p < 0.01) and period circadian regulator (PER1) having greater expression in all other tissues (p < 0.01). The expression among tissues also differed (p < 0.01) for individual circadian clock genes, with circadian locomotor output cycles protein kaput (CLOCK) expression being greater within the adrenal tissues and nuclear receptor subfamily 1 group D member 1 (NR1D1) expression being greater within the other tissues (p < 0.01). Overall, the results indicate that within each tissue, the various circadian clock genes were differentially expressed, in addition to being differentially expressed among the stress tissues of mature Brahman cows. Future use of these findings may assist in improving livestock husbandry and welfare by understanding interactions of the environment, stress responsiveness, and peripheral circadian rhythms.


Subject(s)
Circadian Clocks , Female , Cattle/genetics , Animals , Circadian Clocks/genetics , Period Circadian Proteins , Circadian Rhythm/genetics , Hypothalamus , Adrenal Glands
6.
Life Sci ; 333: 122145, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37797685

ABSTRACT

Colorectal cancer (CRC) is a lethal malignancy with limited treatment strategies. Accumulating evidence indicates that CRC tumorigenesis, progression and metastasis are intimately associated with circadian clock, an inherent 24-h cycle oscillation of biochemical, physiological functions in almost every eukaryote. In the present review, we summarize the altered expression level of circadian genes in CRC and the prognosis associated with gene abundance switch. We illustrate the function and potential mechanisms of circadian genes in CRC pathogenesis and progression. Moreover, circadian based-therapeutic strategies including chronotherapy, therapeutics targeting potential circadian components, and melatonin treatment in CRC are also highlighted.


Subject(s)
Circadian Clocks , Colorectal Neoplasms , Humans , Circadian Clocks/genetics , Carcinogenesis , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Circadian Rhythm/genetics
7.
Sci Rep ; 13(1): 13108, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37567911

ABSTRACT

Across the three domains of life, circadian clock is known to regulate vital physiological processes, like, growth, development, defence etc. by anticipating environmental cues. In this work, we report an integrated network theoretic methodology comprising of random walk with restart and graphlet degree vectors to characterize genome wide core circadian clock and clock associated raw candidate proteins in a plant for which protein interaction information is available. As a case study, we have implemented this framework in Ocimum tenuiflorum (Tulsi); one of the most valuable medicinal plants that has been utilized since ancient times in the management of a large number of diseases. For that, 24 core clock (CC) proteins were mined in 56 template plant genomes to build their hidden Markov models (HMMs). These HMMs were then used to identify 24 core clock proteins in O. tenuiflorum. The local topology of the interologous Tulsi protein interaction network was explored to predict the CC associated raw candidate proteins. Statistical and biological significance of the raw candidates was determined using permutation and enrichment tests. A total of 66 putative CC associated proteins were identified and their functional annotation was performed.


Subject(s)
Circadian Clocks , Connectome , Plants, Medicinal , Ocimum sanctum , Plant Extracts , Circadian Clocks/genetics
8.
Int J Biochem Cell Biol ; 162: 106454, 2023 09.
Article in English | MEDLINE | ID: mdl-37574041

ABSTRACT

Cisplatin, a widely prescribed chemotherapeutic agent for treating solid tumors, induces DNA adducts and activates cellular defense mechanisms, including DNA repair, cell cycle checkpoint control, and apoptosis. Considering the circadian rhythmicity displayed by most chemotherapeutic agents and their varying therapeutic efficacy based on treatment timing, our study aimed to investigate whether the circadian clock system influences the DNA damage responses triggered by cisplatin in synchronized cells. We examined the DNA damage responses in circadian-synchronized wild-type mouse embryonic fibroblasts (WT-MEF; clock-proficient cells), cryptochrome1 and 2 double knock-out MEF (CRYDKO; clock-deficient cells), and mouse hepatocarcinoma Hepa1c1c7 cells. Varying the treatment time resulted in a significant difference in the rate of platinum-DNA adduct removal specifically in circadian-synchronized WT-MEF, while CRYDKO did not exhibit such variation. Moreover, diurnal variation in other DNA damage responses, such as cell cycle checkpoint activity indicated by p53 phosphorylation status and apoptosis measured by DNA break frequency, was observed only in circadian-synchronized WT-MEF, not in CRYDKO or mouse hepatocarcinoma Hepa1c1c7 cells. These findings highlight that the DNA damage responses triggered by cisplatin are indeed governed by circadian control exclusively in clock-proficient cells. This outcome bears potential implications for enhancing or devising chronotherapy approaches for cancer patients.


Subject(s)
Circadian Clocks , Neoplasms , Animals , Mice , Cisplatin/pharmacology , Cisplatin/therapeutic use , DNA Adducts/therapeutic use , DNA Damage , Fibroblasts/metabolism , DNA Repair , Circadian Clocks/genetics , Neoplasms/genetics , Apoptosis
9.
Br J Pharmacol ; 180(23): 2973-2988, 2023 12.
Article in English | MEDLINE | ID: mdl-37403641

ABSTRACT

BACKGROUND AND PURPOSE: The role of circadian locomotor output cycles kaput (CLOCK) in regulating drug chronoefficacy and chronotoxicity remains elusive. Here, we aimed to uncover the impact of CLOCK and dosing time on clopidogrel efficacy and toxicity. EXPERIMENTAL APPROACH: The antiplatelet effect, toxicity and pharmacokinetics experiments were conducted with Clock-/- mice and wild-type mice, after gavage administration of clopidogrel at different circadian time points. The expression levels of drug-metabolizing enzymes were determined by quantitative polymerase chain reaction (qPCR) and western blotting. Transcriptional gene regulation was investigated using luciferase reporter and chromatin immunoprecipitation assays. KEY RESULTS: The antiplatelet effect and toxicity of clopidogrel in wild-type mice showed a dosing time-dependent variation. Clock ablation reduced the antiplatelet effect of clopidogrel, but increased clopidogrel-induced hepatotoxicity, with attenuated rhythms of clopidogrel active metabolite (Clop-AM) and clopidogrel, respectively. We found that Clock regulated the diurnal variation of Clop-AM formation by modulating the rhythmic expression of CYP1A2 and CYP3A1, and altered clopidogrel chronopharmacokinetics by regulation of CES1D expression. Mechanistic studies revealed that CLOCK activated Cyp1a2 and Ces1d transcription by directly binding to the enhancer box (E-box) elements in their promoters, and promoted Cyp3a11 transcription through enhancing the transactivation activity of albumin D-site-binding protein (DBP) and thyrotroph embryonic factor (TEF). CONCLUSIONS AND IMPLICATIONS: CLOCK regulates the diurnal rhythmicity in clopidogrel efficacy and toxicity through regulation of CYP1A2, CYP3A11 and CES1D expression. These findings may contribute to optimizing dosing schedules for clopidogrel and may deepen understanding of the circadian clock and chronopharmacology.


Subject(s)
Circadian Clocks , Animals , Mice , Circadian Clocks/genetics , Circadian Rhythm/physiology , Clopidogrel/pharmacology , Clopidogrel/toxicity , Cytochrome P-450 CYP1A2/metabolism , Pharmaceutical Preparations
10.
Osteoarthritis Cartilage ; 31(11): 1425-1436, 2023 11.
Article in English | MEDLINE | ID: mdl-37230460

ABSTRACT

Osteoarthritis (OA) is the most common age-related joint disease, affecting articular cartilage and other joint structures, causing severe pain and disability. Due to a limited understanding of the underlying disease pathogenesis, there are currently no disease-modifying drugs for OA. Circadian rhythms are generated by cell-intrinsic timekeeping mechanisms which are known to dampen during ageing, increasing disease risks. In this review, we focus on one emerging area of chondrocyte biology, the circadian clocks. We first provide a historical perspective of circadian clock discoveries and the molecular underpinnings. We will then focus on the expression and functions of circadian clocks in articular cartilage, including their rhythmic target genes and pathways, links to ageing, tissue degeneration, and OA, as well as tissue niche-specific entrainment pathways. Further research into cartilage clocks and ageing may have broader implications in the understanding of OA pathogenesis, the standardization of biomarker detection, and the development of novel therapeutic routes for the prevention and management of OA and other musculoskeletal diseases.


Subject(s)
Cartilage, Articular , Circadian Clocks , Osteoarthritis , Humans , Osteoarthritis/metabolism , Cartilage, Articular/pathology , Chondrocytes/metabolism , Circadian Clocks/genetics , Circadian Rhythm/genetics
11.
Glia ; 71(7): 1626-1647, 2023 07.
Article in English | MEDLINE | ID: mdl-36919670

ABSTRACT

Hypothalamic circuits compute systemic information to control metabolism. Astrocytes residing within the hypothalamus directly sense nutrients and hormones, integrating metabolic information, and modulating neuronal responses. Nevertheless, the role of the astrocytic circadian clock on the control of energy balance remains unclear. We used mice with a targeted ablation of the core-clock gene Bmal1 within Gfap-expressing astrocytes to gain insight on the role played by this transcription factor in astrocytes. While this mutation does not substantially affect the phenotype in mice fed normo-caloric diet, under high-fat diet we unmasked a thermogenic phenotype consisting of increased energy expenditure, and catabolism in brown adipose and overall metabolic improvement consisting of better glycemia control, and body composition. Transcriptomic analysis in the ventromedial hypothalamus revealed an enhanced response to moderate cellular stress, including ER-stress response, unfolded protein response and autophagy. We identified Xbp1 and Atf1 as two key transcription factors enhancing cellular stress responses. Therefore, we unveiled a previously unknown role of the astrocytic circadian clock modulating energy balance through the regulation of cellular stress responses within the VMH.


Subject(s)
Circadian Clocks , Mice , Animals , Circadian Clocks/genetics , Astrocytes/metabolism , Hypothalamus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Energy Metabolism/genetics
12.
Int J Mol Sci ; 24(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36768730

ABSTRACT

Clock (circadian) genes are heterogeneously expressed in hair follicles (HFs). The genes can be modulated by both the central circadian system and some extrinsic factors, such as light and thyroid hormones. These circadian genes participate in the regulation of several physiological processes of HFs, including hair growth and pigmentation. On the other hand, because peripheral circadian genes are synchronized with the central clock, HFs could provide a noninvasive and practical method for monitoring and evaluating multiple circadian-rhythm-related conditions and disorders among humans, including day and night shifts, sleep-wake disorders, physical activities, energy metabolism, and aging. However, due to the complexity of circadian biology, understanding how intrinsic oscillation operates using peripheral tissues only may be insufficient. Combining HF sampling with multidimensional assays such as detection of body temperature, blood samples, or certain validated questionnaires may be helpful in improving HF applications. Thus, HFs can serve as a critical model for monitoring the circadian clock and can help provide an understanding of the potential mechanisms of circadian-rhythm-related conditions; furthermore, chronotherapy could support personalized treatment scheduling based on the gene expression profile expressed in HFs.


Subject(s)
Circadian Clocks , Humans , Circadian Clocks/genetics , Hair Follicle , Circadian Rhythm/genetics , Chronotherapy , Aging
13.
Cell Rep ; 42(1): 111982, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36640301

ABSTRACT

Cellular circadian clocks direct a daily transcriptional program that supports homeostasis and resilience. Emerging evidence has demonstrated age-associated changes in circadian functions. To define age-dependent changes at the systems level, we profile the circadian transcriptome in the hypothalamus, lung, heart, kidney, skeletal muscle, and adrenal gland in three age groups. We find age-dependent and tissue-specific clock output changes. Aging reduces the number of rhythmically expressed genes (REGs), indicative of weakened circadian control. REGs are enriched for the hallmarks of aging, adding another dimension to our understanding of aging. Analyzing differential gene expression within a tissue at four different times of day identifies distinct clusters of differentially expressed genes (DEGs). Increased variability of gene expression across the day is a common feature of aged tissues. This analysis extends the landscape for understanding aging and highlights the impact of aging on circadian clock function and temporal changes in gene expression.


Subject(s)
Circadian Clocks , Transcriptome , Male , Animals , Mice , Transcriptome/genetics , Circadian Rhythm/genetics , Circadian Clocks/genetics , Hypothalamus , Aging/genetics , Aging/metabolism
14.
Crit Rev Oncol Hematol ; 179: 103803, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36058443

ABSTRACT

Research into chronotherapy has seen notable developments over the past decades, with a clear focus on the identification of circadian clock genes as potential treatment targets. Moreover, new factors are investigated, such as gender and the role of cancer stem cells in influencing the outcome of chronomodulated treatments. These factors could add to the arsenal of parameters that assist with patient stratification and treatment personalisation. Literature analysis showed that certain anatomical sites received more attention and the associated studies reported clinically significant results, even though some findings are contradictory. The aim of this work was to review the existing studies on chrono-oncology using a tumour site-specific approach and to highlight the status of research in various cancers. Inconsistencies in data reporting, the nature of the studies and the highly heterogeneous patient characteristics, highlight the need for well-designed randomised controlled trials to elucidate the real potential of chronotherapy in oncology.


Subject(s)
Circadian Clocks , Neoplasms , Chronotherapy/methods , Circadian Clocks/genetics , Circadian Rhythm/genetics , Humans , Neoplasms/genetics , Neoplasms/therapy , Precision Medicine
15.
CNS Neurosci Ther ; 28(12): 1930-1941, 2022 12.
Article in English | MEDLINE | ID: mdl-36066207

ABSTRACT

Glioma is characterized as the most aggressive brain tumor that occurred in the central nervous system. The circadian rhythm is an essential cyclic change system generated by the endogenous circadian clock. Current studies found that the circadian clock affects glioma pathophysiology. It is still controversial whether the circadian rhythm disruption is a cause or an effect of tumorigenesis. This review discussed the association between cell cycle and circadian clock and provided a prominent molecular theoretical basis for tumor therapy. We illustrated the external factors affecting the circadian clock including thermodynamics, hypoxia, post-translation, and microRNA, while the internal characteristics concerning the circadian clock in glioma involve stemness, metabolism, radiotherapy sensitivity, and chemotherapy sensitivity. We also summarized the molecular pathways and the therapeutic drugs involved in the glioma circadian rhythm. There are still many questions in this field waiting for further investigation. The results of glioma chronotherapy in sensitizing radiation therapy and chemotherapy have shown great therapeutic potential in improving clinical outcomes. These findings will help us further understand the characteristics of glioma pathophysiology.


Subject(s)
Circadian Clocks , Glioma , MicroRNAs , Humans , Circadian Clocks/genetics , Circadian Rhythm , Glioma/genetics , Carcinogenesis
16.
Mol Med Rep ; 26(5)2022 Nov.
Article in English | MEDLINE | ID: mdl-36177918

ABSTRACT

Increasing evidence suggests that core circadian genes have major roles in the carcinogenic mechanisms of multiple human malignancies. Among these genes, the role of reticulon 2 (RTN2) in ovarian cancer (OV) has so far remained elusive. In the present study, circadian clock gene (CCG) aberrations were systematically assessed across malignancies by using Gene Expression Omnibus and The Cancer Genome Atlas data. The results indicated that various core clock genes (ULK1, ATF3, CRY2, CSF3R, DAAM2, GAS7, NPTXR, PPPIR15A and RTN2) had elevated levels in tumors in comparison with normal tissues and their low expression levels were associated with a better prognosis in OV, indicating that they may be potential candidates for novel investigational approaches. The mRNA and protein expression levels of RTN2 in OV were then further analyzed by reverse transcription­quantitative PCR and immunohistochemistry, respectively. The results indicated that RTN2 mRNA and protein levels were increased in OV specimens in comparison with control samples. Differentially expressed CCGs, such as RTN2, were suggested as indicators of asynchronous circadian rhythms in cancer, which may provide a theoretical basis for chrono­therapy.


Subject(s)
Circadian Clocks , Membrane Proteins , Muscle Proteins , Nerve Tissue Proteins , Ovarian Neoplasms , Carcinoma, Ovarian Epithelial , Circadian Clocks/genetics , Computational Biology , Female , Humans , Membrane Proteins/genetics , Muscle Proteins/genetics , Nerve Tissue Proteins/genetics , Ovarian Neoplasms/genetics , RNA, Messenger/genetics
17.
Sheng Li Xue Bao ; 74(4): 534-540, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35993204

ABSTRACT

Sleep deprivation (SD) has many deleterious health effects and occurs in more than 70% of pregnant women. However, the changes in sex hormones and relevant mechanisms after SD have not been well clarified. The aim of the present study was to explore the effects of SD on the secretion of sex hormones and the underlying mechanisms. Twelve pregnant Wistar rats were divided into control (CON, n = 6) and SD (n = 6) groups. Pregnant rats in the SD group were deprived of sleep for 18 h, and allowed free rest for 6 h, and then the above procedures were repeated until delivery. The CON group lived in a 12 h light/dark light cycle environment. Estradiol (E2) and progesterone (P4) levels were detected by enzyme-linked immunosorbent assay (ELISA), and the expression of circadian clock genes, Bmal1, Clock and Per2, in hypothalamus and pituitary gland tissues were evaluated by immunohistochemistry (IHC) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The PI3K and Akt phosphorylation levels in the hypothalamic and pituitary tissues were determined by Western blot. The results showed that, compared with the CON group, the SD group exhibited significantly reduced serum E2 and P4 levels, down-regulated Bmal1, Clock and Per2 expression, as well as decreased phosphorylation levels of PI3K and Akt. But there was no significant difference of the total PI3K and Akt protein expression levels between the two groups. These results suggest that SD might affect the expression of the circadian clock genes in the hypothalamus and pituitary via PI3K/Akt pathway, and subsequently regulate the secretion of sex hormones in the pregnant rats, which hints the important roles of SD-induced changes of serum sex hormone levels in the pregnant rats.


Subject(s)
Circadian Clocks , Gonadal Steroid Hormones , Hypothalamus , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Sleep Deprivation , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Animals , Circadian Clocks/genetics , Circadian Clocks/physiology , Circadian Rhythm/genetics , Female , Gene Expression Regulation/genetics , Gonadal Steroid Hormones/genetics , Gonadal Steroid Hormones/metabolism , Hypothalamus/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Pituitary Gland/metabolism , Pregnancy , Progesterone , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar , Signal Transduction , Sleep Deprivation/genetics , Sleep Deprivation/metabolism
18.
FEBS J ; 289(21): 6643-6658, 2022 11.
Article in English | MEDLINE | ID: mdl-35997219

ABSTRACT

Dampened peripheral clocks have been linked to osteoarthritis (OA), yet it is unclear whether drugging the clock can ameliorate OA. Given that RORs and REV-ERBs mediate respectively, positive and negative transcriptional feedback of the master clock gene BMAL1, we investigate whether RORs agonist Nobiletin (NOB) and SR1078, and REV-ERBs antagonist SR8278 can enhance BMAL1 expression and attenuate cartilage degeneration. NOB and SR8278 promoted BMAL1 expression and elicited mitigating effects against IL-1ß-induced degeneration of cartilage explants, as evidenced by increased cellular density and collagen synthesis along with alleviated catabolism and collagen denaturation. Despite promoted BMAL1 expression, SR1078 concomitantly suppressed chondrocyte anabolism and catabolism. Consistent with these findings, NOB and SR8278 treatment, but not SR1078, effectively attenuated structural destruction of articular cartilage in surgery-induced OA mouse models. Notably, the beneficial effects of NOB and SR8278 were evidently observed in IL-1ß-induced degeneration of human cartilage explants and immortalized human chondrocytes. Moreover, BMAL1 knockdown assays indicated that NOB and SR8278 enhanced clock function and concordantly rendered protection against altered anabolism and catabolism in a BMAL1-dependent regime. Collectively, our study suggests that targeting RORs and REV-ERBs to promote the dampened peripheral clocks could be a route taken to apply chronotherapy within the context of OA.


Subject(s)
Cartilage, Articular , Circadian Clocks , Osteoarthritis , Mice , Animals , Humans , Circadian Clocks/genetics , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Feedback , Chondrocytes/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Osteoarthritis/metabolism , Cartilage/metabolism , Cartilage, Articular/metabolism
19.
Biomed Res Int ; 2022: 9774879, 2022.
Article in English | MEDLINE | ID: mdl-35832846

ABSTRACT

Gliomas are the most common primary intracranial tumors and closely related to circadian clock. Due to the high mortality and morbidity of gliomas, exploring novel diagnostic and early prognostic markers is necessary. Circadian clock genes (CCGs) play important roles in regulating the daily oscillation of biological processes and the development of tumor. Therefore, we explored the influences that the oscillations of circadian clock genes (CCGs) on diagnosis and prognosis of gliomas using bioinformatics. In this work, we systematically analyzed the rhythmic expression of CCGs in brain and found that some CCGs had strong rhythmic expression; the expression levels were significantly different between day and night. Four CCGs (ARNTL, NPAS2, CRY2, and DBP) with rhythmic expression were not only identified as differentially expressed genes but also had significant independent prognostic ability in the overall survival of glioma patients and were highly correlated with glioma prognosis in COX analysis. Besides, we found that CCG-based predictive model demonstrated higher predictive accuracy than that of the traditional grade-based model; this new prediction model can greatly improve the accuracy of glioma prognosis. Importantly, based on the four CCGs' circadian oscillations, we revealed that patients sampled at night had higher predictive ability. This may help detect glioma as early as possible, leading to early cancer intervention. In addition, we explored the mechanism of CCGs affecting the prognosis of glioma. CCGs regulated the cell cycle, DNA damage, Wnt, mTOR, and MAPK signaling pathways. In addition, it also affects prognosis through gene coexpression and immune infiltration. Importantly, ARNTL can rhythmically modulated the cellular sensitivity to clinic drugs, temozolomide. The optimal point of temozolomide administration should be when ARNTL expression is highest, that is, the effect is better at night. In summary, our study provided a basis for optimizing clinical dosing regimens and chronotherapy for glioma. The four key CCGs can serve as potential diagnostic and prognostic biomarkers for glioma patients, and ARNTL also has obvious advantages in the direction of glioma chronotherapy.


Subject(s)
Circadian Clocks , Glioma , ARNTL Transcription Factors , Biomarkers , Chronotherapy , Circadian Clocks/genetics , Circadian Rhythm/genetics , Glioma/diagnosis , Glioma/genetics , Glioma/therapy , Humans , Prognosis , Temozolomide
20.
J Biol Rhythms ; 37(4): 385-402, 2022 08.
Article in English | MEDLINE | ID: mdl-35880253

ABSTRACT

The Earth's 24-h planetary rotation, with predictable light and heat cycles, has driven profound evolutionary adaptation, with prominent impacts on physiological mechanisms important for surviving critical illness. Pathways of interest include inflammation, mitochondrial function, energy metabolism, hypoxic signaling, apoptosis, and defenses against reactive oxygen species. Regulation of these by the cellular circadian clock (BMAL-1 and its network) has an important influence on pulmonary inflammation; ventilator-associated lung injury; septic shock; brain injury, including vasospasm; and overall mortality in both animals and humans. Whether it is cytokines, the inflammasome, or mitochondrial biogenesis, circadian medicine represents exciting opportunities for translational therapy in intensive care, which is currently lacking. Circadian medicine also represents a link to metabolic determinants of outcome, such as diabetes and cardiovascular disease. More than ever, we are appreciating the problem of circadian desynchrony in intensive care. This review explores the rationale and evidence for the importance of the circadian clock in surviving critical illness.


Subject(s)
Circadian Clocks , Animals , Circadian Clocks/genetics , Circadian Rhythm/genetics , Critical Care , Critical Illness/therapy , Humans , Inflammation/genetics , Inflammation/therapy , Mitochondria/genetics , Muscles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL